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1. Introduction
The purpose of this manual is to present an easy to understand description of the stock preparation refin-
ing process.   Useful methods for analyzing the process will be presented, together with guidelines for the 
proper selection of refiner fillings and operation of refiners.  

It is difficult to learn about pulp refining without first knowing something about the overall process of 
papermaking.  This introductory manual will provide a very brief discussion of the process of converting 
trees into finished paper products.  To include such a broad scope of information requires a certain degree 
of simplification.  Nevertheless, the big picture is very helpful when considering pulp refining applications, 
identifying process problems and recognizing the real economic opportunities of an optimized system.  
The refining technologist must learn how to select refiner fillings and operate refiners so as to optimize the 
performance of the paper being produced using available raw materials.

Among the numerous paper and paperboard grades manufactured today, the most notable are: toilet 
and facial tissue, paper towels and napkins, newsprint, magazine and catalog paper, wrapping paper, bag 
paper, and laser printer and copy paper.  In addition to these commodity paper grades, there are many 
specialty paper grades such as coffee filters, fine writing stationary, wallpaper, and currency. 

We also use a wide variety of paperboard products.  These include linerboard and corrugating medium 
(which make up the facing and the fluted core, respectively, of corrugated containers), folding boxboard, 
and liquid packaging types of paperboard such as juice boxes and milk cartons.

The basic building block for all of these products is cellulose fiber.  The vast majority of fibers come from 
trees, although some specialty grades of paper and board are produced using cotton or other non-wood 
based natural fiber.  

There are many steps in the complex process of converting wood into paper.  One of these steps is refining.  
Refining plays a very important role in modifying the characteristics of fibers so that they may form a sheet 
of paper or paperboard with a specific set of desirable properties such as stiffness, opacity, tear strength 
or surface smoothness, to mention just a few.  In order to understand the principles of pulp refining, it is 
first necessary to know a little about the entire process of making paper from wood.
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2. Trees, Wood and Fibers

Trees can be divided into two distinctive classes:  

1) The non-flowering type (gymnosperms) has needle shaped leaves that stay on the tree year-round.  
These are often referred to as evergreens and, in the world of papermaking, they are called ‘softwoods’.  
The principal varieties for papermaking include spruce, fir, and pine.

2) Trees that produce flowers (angiosperms) have broad leaves that generally fall from the tree in the 
autumn and reappear in the spring.  These deciduous varieties - also known as ‘hardwoods’- include oak, 
maple, birch, aspen, gum, and eucalyptus.

Although this document will focus entirely on wood based fiber, there are several non-wood plant types 
(e.g. reed, straw, sugar cane, and kenaf) that can also produce useful fibers for papermaking.  Because 
these are annual plants, there exists the possibility that production of fiber from non-wood sources could 
become more efficient than the equivalent production from forest resources at some time in the future.  
However, for the present, forest resources are by far the leading source of papermaking fiber in all western 
countries and in most developed countries.

The two classes of trees described above - the softwoods and hardwoods - are both used to produce paper-
making pulps which are similarly referred to as either softwood or hardwood pulps. These two broad classes 
of pulps contain fibers that are quite different in their physical characteristics.  In general, hardwood fibers 
are much shorter and stiffer, while softwood fibers are long and more flexible.  Each fiber type has advantag-
es and disadvantages when it comes to papermaking.  The selection of which to use, or what combination of 
the two to use, is dependant on the type of paper being produced and the required end-use properties.  It is 
also important to realize that average fiber length and stiffness vary considerably within the broad category 
of either softwood or hardwood pulps; indeed, some overlap exists.

Figure 1: Cross-section of softwood(1)
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A very simple way to examine wood structure is to study the cross section of a tree that has been cut 
down.  The cross section of a typical softwood tree is shown in Figure 1.  The main stem of the tree consists 
of several concentric rings.  Each ring represents the growth of the tree in any one year.

The innermost rings, which are relatively dark in color, are called heartwood.  The lighter colored outer 
rings are called sapwood, and it is in this region that water and minerals flow up and down in the tree.  
Between the sapwood and the bark is the cambium layer where the cells of each annual ring are spawned.  
This very thin layer represents the life of the tree - if the cambium layer is cut around the entire circum-
ference of a tree, the tree will die.

A closer look at the cross section of the tree (Fig. 2) shows that each annual ring consists of several layers 
of cells (or fibers) which diminish in size moving outward in the radial direction through that individual ring. 
The larger cells with somewhat thinner walls were generated during the spring which is a rapid growth 
period.  The smaller, thicker walled cells were generated during the slower growth summer period.  These 
are referred to as springwood and summerwood cells, respectively.  Although these two fiber groups differ 
significantly in terms of physical properties such as strength and stiffness, there is no practical means of 
separating them in the process of converting the wood into paper. 

Fibers are comprised mostly of long chain molecules of cellulose which are arranged such that the cellulose 
is partly crystalline.  These molecules then form long parallel strands called micro-fibrils which, in turn, form 
long strands called fibrils.  These fibrils are wound at variable angles, called the fibril angle, around the axis 
of the fiber.  In addition to the crystalline and non-crystalline cellulose in the fibrils, there are several other 
polysaccharide molecules of much shorter chain length.  These are collectively referred to as hemicelluloses.   

Wood fibers are elongated tubular cells tapered at each end.  Softwood fibers have an average length of 
2.0-4.0 mm.  Hardwood fibers have an average length in the range of 0.6-2.0 mm.  Softwood fibers have 
an average width of 0.02-0.05 mm while the hardwoods have an average width of 0.01-0.04 mm.  There 
are significant differences in relative size and average wall thickness of fibers depending on the particular 
species of hardwood or softwood, whether it is springwood or summerwood, how dry the growing season 
was, etc.  Table 1 shows typical fiber dimensions for some common softwood and hardwood species.

Figure 2: Earlywood/latewood differentiation in softwood(1)
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The general structure of any given fiber is suitably represented in Figure 3.  The cell wall of the fiber con-
sists of an outer sheath called the primary wall (P) which is relatively thin and has no predominant fibril 
angle.  The much thicker secondary wall is made up of three distinctive layers identified as S1, S2 and S3.

The S1 layer is relatively thin and lies just below the primary wall.  The S2 layer represents most of the 
mass of the fiber and its average fibril angle is what determines the fibril angle properties of the fiber.  The 
innermost secondary wall layer, S3, is thin like the S1 and lies adjacent to the hollow inner core of the cell.  
This hollow core is called the lumen.  The cells (or fibers) in the wood are cemented together by an amor-
phous material called lignin.  The lignin layer between cells is referred to as the middle lamella. 

TABLE 1

Wood Species Average Fiber Length (mm) Fiber Diameter (µm) Cell Wall Thickness (µm)

Loblolly Pine 3.6 35-45 4-11

Douglas Fir 3.9 35-45 3-8

W. Hemlock 4.2 30-40 2-5

White Spruce 3.3 25-35 2-3

Sweetgum 1.7 20-40 5-7

White Oak 1.4 14-22 5-6

White Birch 1.8 19-30 2-4

Sugar Maple 0.8 14-30 -

Red Alder 1.2 16-40 -

Figure 3: Diagram of cell wall organization(1)
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In reality, the physical and chemical structure of wood is considerably more complex than the above de-
scription indicates.  For example, the middle lamella contains about 70-80% lignin along with some hemi-
cellulose and several other organic compounds.  Although the cell wall consists mostly of cellulose and 
hemicellulose, it also contains a high percentage of lignin, particularly in the outer region of the S2 layer.  
While cellulose and lignin are together the main constituents of wood and are of primary concern in the 
papermaking process, the hemicelluloses can also significantly affect paper properties.  The general com-
position of softwoods and hardwoods is described in Table 2.

TABLE 2

Softwoods Hardwoods

Cellulose 42 ± 2% 45 ± 2%

Hemicelluloses 27 ± 2% 30 ± 5%

Lignin 28 ± 3% 20 ± 4%

Extractives 3 ± 2% 5 ± 3%

The structural features of the two main wood types are illustrated in Figure 4.  
Note the general differences in cell wall thickness and fiber width between the two wood species.

For the papermaker, it is mostly the differences in fiber dimension (length, width) and stiffness that mat-
ter.  For hardwoods, however, the presence of vessels is also significant.  Vessels are longitudinal tubes 
composed of many cells connected end to end that are known as vessels elements or vessel segments.  
Depending on the species of hardwood and the grade of paper being produced, vessel segments can be 
extremely troublesome in that they contribute to print picking problems.  Oak, a common wood source in 
the south, is most notorious for this problem.

Figure 4a: Main structural features of softwood(1) Figure 4b: Main structural features of hardwood1)
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3. Pulping of Wood for Paper & Paperboard
In order to use the cellulose fibers found in trees for papermaking, some type of pulping process is 
necessary to reduce the wood to its component fibers.  There are two broad methods for producing pulp 
directly from wood:  chemical pulping and mechanical pulping.  Pulp from wood is often called virgin pulp, 
as distinguished from recycled fiber pulps that are produced from waste paper.
 
Chemical pulping uses some form of chemical digestion to remove the lignin that binds the fibers together 
in the wood.  This results in a relatively complete separation of the individual fibers with relatively little input 
of mechanical energy.  The most commonly used chemical treatments are the kraft and sulfite processes.  

In mechanical pulping, a machine is used to grind or refine the wood so as to reduce it into individual fibers 
and fiber fragments.  Very large amounts of energy are required to achieve this type of mechanical separa-
tion, and little or no lignin is removed in the process.  It is important to note that, although large disc refiners 
are commonly used in mechanical pulping operations, the process of refining wood chips is a fundamentally 
different technology from the stock preparation refining which is the main topic of this manual.  

Before elaborating on the chemical pulping process and its implications for stock prep refining,  
a brief description of common mechanical pulping processes follows:  

Mechanical Pulps

Mechanical pulps can be produced by a variety of means.  In the basic groundwood process, whole logs 
are pressed against large stone grinding wheels while substantial amounts of flushing water are added.  
The grits of the grinding stones tear fibers and fragments off the exposed surface of the log, producing a 
pulp slurry.  The raw pulp slurry contains fibers, wood fragments, splinters, and small fiber bundles called 
shives.  After screening, cleaning and brightening steps, this groundwood pulp is suitable for the produc-
tion of many paper grades such as newsprint, directory paper, or magazine paper.  Because of the limited 
strength of groundwood pulps, some chemical pulp fiber is added for most paper grades.  A more recent 
development is the pressurized groundwood (PGW) process, where wood is ground at high temperature 
in a pressurized atmosphere.  This results in longer fibers and stronger pulp than the conventional pro-
cess, but with an accompanying loss in light scattering ability.

Another class of mechanical pulp is produced by feeding wood chips into large and pressurized disc 
refiners which defibrate the chips into individual fibers.  When a pre-steaming stage is used to soften the 
chips prior to refining, the process is called thermomechanical pulping (or TMP).  A variety of chemical 
additions or pretreatment can also be used, producing chemi-thermomechanical pulp (CTMP) or bleached 
chemi-thermomechanical pulp (BCTMP).  The chemical additions may remove some lignin or other 
carbohydrate materials, and may reduce the required energy somewhat.  However, these pulps retain the 
general characteristics of mechanical pulps in that the cell wall of the resulting pulp fibers does not readily 
swell and the fibers do not easily collapse to form dense paper.  

Groundwood and TMP pulps are typically bleached using hydrosulfite and/or peroxide prior to blend-
ing with other furnish components.  And both pulps can benefit from low consistency post-refining for 
strength enhancement and shive reduction prior to the paper machine.
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Chemical Pulps
  
As suggested above, the primary purpose of the chemical pulping process is to dissolve the lignin that is 
present in wood, and to remove the resulting by-products from the pulp.  The chemistry of the process is 
fairly complex due to the many types and forms of organic material present in wood.  The application of 
the technology is equally complex due to the economic advantage of recovering and reusing the chemicals 
and extracting available energy in the process.  In the production of pulp for paper and paperboard, the 
prevailing processes include the alkaline sulfate process and various sulfite processes which may be alka-
line, acid, or neutral.  The acid sulfite process is seldom used because of the excessive damage to cellulose 
and the substantial removal of the hemicelluloses. The neutral sulfite semi chemical process (NSSC) is 
widely used in the production of paperboard for the fluted core used in carton production.   

The vast majority of chemical pulps used for paper and board are produced with the sulfate process, most 
commonly referred to as the kraft process.   Most of the information in this manual relates specifically to 
the kraft process, although many of the principles will apply regardless of the chemical pulping method.

The objective in chemical pulping is to remove the lignin while causing minimum damage to the cellulose 
and hemicellulose.   In the special case of dissolving pulps which are the raw material for cellulose-based 
plastics such as rayon, all of the hemicellulose is removed leaving behind the alpha cellulose.  For many 
papermaking applications, however, the hemicellulose constituents play an important role in providing 
strength in the sheet and it is therefore desirable not to remove them. 

The dissolving of lignin begins in a hot, pressurized digester vessel as the wood chips absorb the solution 
of chemicals called the pulping liquor.  The hollow lumen of the fiber acts as a conduit for the liquor, just 
as it did for the sap of the original tree. The liquor passes through the microscopically porous cell wall 
and quickly attacks the lignin rich middle lamella that holds the fibers together in the wood.  The lignin 
contained within the cell wall of the fiber is more resistant to attack and is more slowly dissolved by the 
pulping liquor.   If the pulp is to be used for linerboard or for some other unbleached paper or board grade, 
it will be washed to remove residual liquor and then sent to the stock preparation area for refining.  In the 
case of bleached paper or board grades, most of the residual lignin remaining after pulping will be subse-
quently removed in the bleaching process using oxygen, chlorine dioxide or peroxide, either alone or in 
combination.  The washed and bleached pulp is then ready for stock preparation refining.
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Secondary Fiber

Virgin pulps are not the only direct source of wood fiber for papermaking.  Recycled paper and paperboard 
represent a very large percentage of the papermaking fiber used in Europe, North America, and around 
the world.   A great advantage of recycled fiber stems from the fact that the process of reducing the 
wood to pulp has been previously accomplished, and it can be easily resluried in water and immediately 
available to the paper machine.  The primary disadvantage stems from the fact that the recycled paper or 
board contains a variety of fiber types, minerals, chemical additives, contaminants and printing ink.  It is 
very difficult to maintain strict control over the properties of the paper produced when the raw material 
is so highly variable.  Nevertheless, more than 30% by weight of the annual production of paper and pa-
perboard in the United States consists of secondary fiber.  Modern recycling mills have very sophisticated 
systems for the removal of contaminants and ink, and they can produce high quality pulp for many paper 
grades.  Because recycled pulps contain a mixture of fibers (e.g. hardwood and softwood fibers, chemical 
and mechanical pulp fibers) and they have already been exposed to some amount of refining, selection 
and specification of refining equipment for secondary fiber plants requires special consideration.  It is 
sufficient to recognize that practically all of the fibers that are present in recycled paper and paperboard 
were originally produced from wood, and the fiber characteristics of the recycled pulp will generally reflect 
those of the original wood species and pulping process. 

While virgin pulps can be generally divided into the two classes described above, i.e. chemical and me-
chanical pulps, there are in fact several intermediate processes.  Table 3 lists several of these processes 
together with their approximate yield.  

Yield represents the percentage of the original dry substance of the wood that remains after pulping.  For 
yields below 60% or so, enough lignin will have been removed from the cell wall to permit the wall to ab-
sorb water readily and to swell.  At higher yields, cell wall swelling is limited.  Fiber swelling and flexibility 
will be discussed in more detail in the following section on paper structure and the role of refining.

TABLE 3

Pulp Type Yield

GWD & RMP 93-98%

TMP 94-96%

CTMP 85-94%

Semi-Chemical 65-90%

High Yield Kraft 55-65%

Bleached HW Kraft 48-50%

Bleached SW Kraft 42-45%
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4. Structure of Paper & The Role of Refining
Paper is a tangled web of fibers.  The fibers are more or less lying in a flat plane, and they are attached to 
one another at the many points of contact that occur wherever one fiber lies across another fiber.  The 
strength of paper is largely determined by the strength of the attachments at these fiber crossing points.  
While it is true that strength of the individual fibers can also be a factor in determining the strength of the 
resulting paper, it is often the case that paper fails when the fiber-fiber bonds fail.

The linkage that occurs at the fiber crossing points of paper is made up of hydrogen bonds which are 
formed between corresponding points on two cellulose or hemicellulose molecules when an intercon-
necting water molecule is removed by drying.   A representation of this type of bond in cellulose is shown 
in Figure 5. 

Figure 5: Cellulose bond

Anything that can increase the number of hydrogen bonds engaged at a crossing point will increase the 
strength of the linkage and, thus, the strength of the paper.

For simplicity, consider just two fibers and a single crossing of one over the other.  If the cell wall of these 
fibers is very rigid, as with a glass tube for example, the area of contact at the crossing point will be small.  
On the other hand, if the fiber walls are very flexible, as with a bicycle inner tube, the contact area at the 
crossing point will be much larger.  It is important to recognize that as fibers become more flexible and 
collapse to ribbon-like structures, the contact area increases dramatically – as does the potential number 
of hydrogen bonds that can be formed.  The thickness of the cell wall has a dominant influence on the 
“collapsibility” of the fiber.   For this reason, the type of wood used largely determines the potential for 
achieving critical paper properties.  However, for any given fiber source and pulping process, it is the pro-
cess of refining which essentially determines the extent to which the fibers collapse.

The degree of fiber collapse and the resulting increase in contact area are important in determining how 
many bonds can potentially be formed.   It is also necessary that the surfaces in contact have a relatively 
large number of exposed bonding sites.  This can be accomplished by ensuring that all the surface lignin 
has been removed together with the primary cell wall, and that many of the fibrils near the exterior of 
the S2 layer are “teased” out so as to create the effect of a frayed rope.  The removal of lignin and primary 
wall material is largely accomplished in the pulping process.  The “teasing out” of fibrils, referred to as 
fibrillation, is accomplished in refining.
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The principal objectives of stock preparation refining are thus: 1) to increase the flexibility of the cell wall 
to promote increased contact area, and 2) to fibrillate the external surface of the fiber to further promote 
the formation of hydrogen bonds and increase the total surface area available for bonding.

Now that we have examined what happens at a single fiber crossing point, we can consider what the 
aggregate effects are on the structure of the paper sheet.

The function of the paper machine is to convert a suspension of fiber and water into a relatively mois-
ture-free web with specific characteristics.  If you visualize a layered structure of fibers piled one on top 
of the other, the thickness of the resulting paper may be equivalent to anywhere from five individual fiber 
thicknesses up to several tens of fiber thicknesses.   If the fibers act like rigid cylinders, the paper sheet 
will be very thick and full of void spaces (i.e. it will be bulky); whereas if all the fibers collapse to ribbons, 
the sheet will be much thinner and denser.   Indeed, the most evident result of refining is an increase in 
the density of the paper that is formed.  Along with this increase in density comes a reduction in air per-
meability (or porosity), an increase in tensile strength, and often a reduction in tear strength.  Whether 
or not a reduction in tear strength occurs, refining almost always increases the fracture toughness of the 
sheet.  It is easy to imagine that surface smoothness will be better when ribbons are used in place of rigid 
cylinders, so long as the ribbons lie flat in the plane of the sheet.  Figure 6 shows a typical cross section of 
paper, illustrating quite clearly how fiber collapse might affect several paper properties.

Figure 6: Cross-section of paper

Another effect of increasing bonding and paper density is to make the resultant sheet less opaque (i.e. more 
transparent).  For printing papers, this is an undesirable side effect because sheet opacity is important in 
preventing the printing on one side of the paper from showing through on the other side.
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It is important to remember that there are other steps in the forming process that substantially affect 
paper properties.  After the sheet is formed on the machine, water is removed in the press section where 
the nature and extent of press loading can have considerable effects on paper properties.  Pressing in-
creases the density of the wet mat and of the finished paper as well.  In the drying section of the machine, 
conditions will again affect final sheet properties.  Hydrogen bonds form when intervening water is re-
moved, after which a significant amount of shrinkage takes place both in the individual fibers and in the 
paper sheet.  Fibers shrink mostly in the cross-wise direction rather than along their length.  However, the 
cross-wise shrinking of one fiber can cause a length-wise compression of a fiber that is bonded to it in a 
perpendicular orientation.  The resulting internal stresses can dramatically affect paper properties (e.g. 
dimensional stability, curl).  The extent to which the sheet is restrained during drying can play a large role 
in determining paper performance.

Clearly, while refining is a very important step in engineering the structure of paper, is only one of several 
critical process steps.  It is impossible to optimize any one of the critical steps without due consideration 
of the others.  

So far, we have discussed the refining process and how it affects paper structure in a mostly qualitative 
way.  In later sections, we will try to quantify the process and learn how to use refiners and refiner fillings 
to assist the paper maker in achieving economic and product quality benefits.  We will first review some 
common measurements of pulp and paper quality, and then look at specific factors that affect the perfor-
mance of refining equipment.



14

5. Pulp Quality Measurements
A number of analytical tests can be performed on pulp samples.  Some measure chemical characteristics 
while others measure physical attributes.  Most provide information that is useful in predicting the prop-
erties and performance of the end product made from that pulp.  The most common tests are described 
below.  Many of the following descriptions will relate to TAPPI (Technical Association of the Pulp and Paper 
Industry) standard test procedures.  It is important to recognize, however, that there are many European 
standards which are equally applicable and, in some cases, more widely practiced.

Moisture Content
For pulp that has been formed into sheets, moisture content is determined by weighing a representative 
sample collected from several locations within a bale and then oven drying to remove all water.  The dif-
ference between the original sample weight and the oven dried sample weight represents the amount of 
moisture present in the original sample.  A percentage is determined by dividing the amount of moisture 
by the original sample weight.  For dry pulp sheets, moisture content is usually between 5-15%.  For wet 
lap pulp, moisture content is typically 50%-60%. 

Consistency
This test measures the dry solids concentration of a suspension of fiber in water.  A representative sample 
of pulp is collected, it is filtered to remove free liquid, and then oven dried to remove all remaining water.  
In stock preparation refining systems, consistency is normally between 2% and 6%.  This permits relatively 
easy pumping of the slurry using conventional centrifugal pumps.

Kappa Number
The result of a quantitative chemical analysis, the Kappa number of a pulp indicates the extent to which 
lignin has been removed in the chemical pulping process.   A high Kappa number, indicating a greater 
amount of retained lignin, is common for unbleached pulps used in the production of linerboard or bag 
paper.  If the pulp is to be bleached, the Kappa number of the pulp before bleaching predicts the bleach-
ability of the pulp.  Low Kappa pulps are easier to bleach.  High Kappa pulps usually require more energy in 
refining, but often produce stronger paper or board (particularly with regard to tear strength).

Viscosity
There are a number of standard tests in which a sample of pulp fibers is dissolved in a suitable solvent, and 
the viscosity of the resulting solution is measured.  This viscosity indicates the degree of polymerization 
of the cellulose and is a measure of the degradation of the cellulose in the pulping and bleaching process.  
The lower the molecular weight (or degree of polymerization), the more degraded is the cellulose and, in 
general, the lower the physical strengths of the paper or board produced.
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Fiber Length
The average fiber length of a pulp has a direct bearing on many of the important physical characteristics of 
the paper produced.  In particular, tearing resistance is very closely related to average fiber length:  the lon-
ger the fiber, the greater the tear strength of the sheet produced.  Screening classifiers (e.g. Bauer McNett) 
have been used in the past to determine the weight percentage of fibers collected on various screen sizes, 
but these have largely been replaced by computer automated optical devices.  The most commonly used 
of these optical instruments are the Kajaani FS-200 and the Optest FQA.  The data output of these devices 
can provide information such as the average length and length distribution curve for the fibers in that pulp.  

Fines Content
An additional measure of pulp particle size is the percentage of fines.  This consists of particles measuring 
less than 0.2 mm in length as measured by an optical analyzer, or the weight percentage of the P200 frac-
tion obtained from a Bauer McNett classifier.  Fines can have a significant impact on processing, particu-
larly with regard to filtering or drainage operations.   Fines content of a kraft pulp may be in the range of 
5– 15%.  For a groundwood mechanical pulp, the fines content may exceed 40%.

Coarseness
This is a measure of the average weight of fiber per unit length, often reported in units of mg/m.  It is most 
conveniently measured using an optical analyzer.   For fibers of a given average length, it is a measure of 
the cross sectional area of the fiber.  For a given average diameter, it is measure of wall thickness.  Coarse 
fibers are considered to be less conformable than fine fibers and do not bond as readily.  Coarser fibers 
also result in fewer fibers per mass of pulp, which has a significant impact on sheet formation and light 
scattering potential.

Zero-Span Tensile
This test is a measure of the intrinsic strength of individual fibers.  For normal tensile strength tests (de-
scribed in the next section), the jaws of the tensile machine gripping a paper sample are spaced about 7” 
apart.  As the sample is pulled apart, many fibers pull out of the sheet by breaking fiber-to-fiber bonds.  
The resultant breaking load is a measure of both fiber strength and bond strength.  For the Z-Span test, 
the gripping jaws are moved together until they are touching so that, in principle, all fibers in the tensile 
zone are gripped by the jaws.  The fibers are then stressed to the breaking point and a measure of fiber 
strength is obtained. 

Freeness
Freeness is a measure of the drainage resistance of a pulp slurry.  In the Canadian Standard Freeness (CSF) 
test, one liter of dilute slurry (0.3% consistency) is drained through a standard screen which captures the 
fibers to form a mat.  The amount of water overflowing a weir and collected from a side orifice is then 
a measure of how fast the water drains through the mat.  CSF values may be as high as 750 ml for an 
unrefined, unbleached softwood kraft, and as low as 30-40 ml for a fine groundwood mechanical pulp.  
Stock prep refining of kraft pulp will typically reduce freeness to between 600 and 250 ml depending on 
the starting freeness and the paper grade being produced.  Freeness is a good general predictor of sheet 
density and, as such, is routinely used to predict strength, opacity and other physical properties of paper.  
Freeness is the most widely used control test in the stock preparation area of the paper mill, at least in 
North America.  Other standard measures of pulp drainage include Schopper-Riegler (SRo), Williams slow-
ness, and TAPPI drainage time.  All of these measures can be roughly converted to equivalent CSF values.



16

Beating Response
There are a number of standardized bench top beating devices that can be used to refine small pulp sam-
ples.  The Valley Beater and the PFI Mill are two such commonly used devices.  The nature of the fiber 
treatment in these devices is very different compared to each other and to industrial refining, and it is not 
possible to directly compare the results of one type of test to results of another.  As beating takes place, 
samples are withdrawn from the test device to generate a refiner curve.  In the case of the Valley Beater, 
samples are typically collected at 5 or 10 minute intervals over a period of 20 to 40 minutes depending on 
the ease of refining for a given pulp.  Pulp samples taken during the beating cycle are typically tested for 
freeness, fiber length, fines content, and handsheet properties.

Handsheet Testing
To test for sheet properties, pulp is diluted and formed into handsheets using a sheet mold and a very 
specific forming procedure.  The wet sheets from the handsheet mold are carefully removed and pressed 
under standard conditions.  Pressing is performed on several sheets at a time, with thin highly polished 
steel plates between them.  The pressed sheets adhere to the steel plates which are placed on separator 
rings and stored in a temperature and humidity controlled room.  After a specified period of drying and 
conditioning, the handsheets are peeled from the polished plates and set aside for physical testing.  One 
very important factor to remember when using handsheet test results to predict machine made paper is 
that handsheets are fully restrained by the polished plates during the drying process.  In other words, they 
are able to shrink in the thickness direction but cannot shrink in the X-Y plane.    Machine-made paper, 
on the other hand, shrinks considerably in both the machine and cross directions.  Consequently, sheet 
properties and the trends observed from beating can be very different for differing conditions of restraint 
during drying. 

Physical and optical tests – such as tensile strength (or breaking length), tear strength, burst strength, cal-
iper and light scattering - are performed on pieces of the handsheets cut to specification.  The results of 
these tests are typically plotted against beating time, freeness, and/or density in order to demonstrate the 
beating response of the pulp being tested.  Tests performed on handsheets are similar to those performed 
on samples of machine made paper, as described in more detail in the following section.
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6. Paper Quality Measurements
There are a variety of tests that can be performed on paper samples.  Some measure strength or tough-
ness, others measure surface properties such as smoothness or coefficient of friction, and still others 
measure optical properties such as opacity or brightness.  

Nearly all paper properties are a function of the density of the paper which is, in turn, largely a function of 
refining.  In evaluating processing alternatives, it is therefore generally appropriate to examine how refin-
ing affects the sheet properties of interest at a given density.  More importantly, density can have a direct 
economic impact since many paper and board grades are sold not by weight but by area, subject to a set 
of test criteria.  If a producer can meet sheet specifications at a lower density (i.e. at higher bulk), there is 
a significant profit incentive to do so.

It is important to recognize that machine made paper will exhibit significantly different properties in the 
direction of travel of the web (machine direction or MD) compared with the perpendicular direction 
(cross-machine direction or CD).  As mentioned earlier, tests performed on standard Tappi handsheets are 
not dependent on direction. 

Density
Density of paper is determined by measuring the weight and thickness (or caliper) of a sheet of paper 
of known area.  Basis weight and caliper are usually measured using several sheets of paper in order to 
reduce local variations.  The inverse of density is a measure of specific volume, most commonly referred 
to as sheet bulk.

Tensile Strength
Tensile strength is measured by clamping a strip of paper between two jaws of a tensile testing machine 
and recording the resulting load as the moving jaw stretches the paper to its breaking point.  The max-
imum total force applied is called the breaking load.   The elongation (or strain) of the strip is also mea-
sured, and the machine usually provides an output plot of load versus elongation as well.  The area under 
the load-elongation curve represents the tensile energy absorption (TEA), and the slope of the curve is 
called the elastic modulus.

Tear Strength
Measurement of the out-of-plane tearing strength (or tearing resistance) is done using a pendulum type 
device that measures the energy absorbed in tearing a paper sample.   A starting slit is cut into the sample 
to initiate the tear, and the load is applied to simulate a piece of paper being torn by grabbing it with two 
hands and ripping it down the middle.  Tear strength is a function of fiber length, fiber strength, and the 
degree of bonding in the sheet. 

Bursting Strength
This test is performed by clamping a paper sample between two steel rings over a rubber diaphragm.  
The diaphragm is then inflated, and the inflating pressure is measured at the moment that the dia-
phragm bursts through the sample.  Burst strength is an indicator of sheet bonding and often trends 
with tensile strength.
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Compressive Strength
There are several methods available to measure the edgewise compressive strength of a paper or paper-
board sample.  The Ring Crush Test is a traditional method in which a ½” x 6” strip of paper is rolled end-
to-end to form a very short cylinder about 2” in diameter.  The cylinder is then compressed axially between 
two plates and the maximum load is measured.  In recent years, a short span compression test (STFI) has 
become more widely used.  Other similar tests have been developed for corrugated board samples.  Com-
pressive strength increases with refining in a nearly linear relationship to density.   

Internal Bond or Z-Direction Strength  
There are several test methods, the most common of which is the Scott Bond test which measures the 
energy or force required to separate a paper sample in its thickness direction.  This is a very important 
property for paper or board grades that are printed on high-speed offset printing presses, where high tack 
inks act to separate the paper into two layers at the exit of the printing nip.

Stiffness
As implied, the stiffness test measures the resistance to bending of a sample of paper.  The Gurley type 
tester is the most common.  It can be used for a variety of paper and paperboard grades by adjusting the 
length and width of the sample to keep the measurement within a specified range.  Stiffness can be a 
very important characteristic of paper and is affected by refining in a complex way.  It is increased as the 
amount of bonding increases, but decreased by the reduction in sheet caliper.  Therefore, increasing the 
amount of bonding at a given sheet density always improves stiffness.   

Porosity
Sheet porosity or air permeability is determined by measuring the air flow through a known area of paper.  
It can be reported in two ways:  1) as the time required for a known volume of air to pass through a sample 
of paper, in units of sec/100 cc (Gurley porosity); or 2) as the volume of air flow per minute, reported in 
ml/min (Sheffield or Bendtsen).  Refining always acts to close up a sheet and make it less porous.  Porosity 
is often used as an indicator of the potential absorbency of the paper, particularly for coated grades.  

Smoothness
Smoothness (or, conversely, roughness) is often measured indirectly using a Sheffield, Bendtsen or Parker 
Print Surf (PPS) test.  These tests measure the extent to which air flows between the land area of a smooth 
ring and the surface of a paper sample on which the ring rests.  Both the air pressure and the contact 
pressure of the ring are carefully controlled.  More sophisticated methods are available for measuring the 
microscopic topography of a paper sample, but none are in common use yet.

Folding Endurance
This test measures the number of double folds that a paper sample will endure while subjected to a fixed 
load in tension.  The most common test device is the MIT tester.  The effect of refining on MIT fold is not 
clearly predictable.  Folding endurance is very dependant on fiber length and coarseness, where longer 
and less coarse is better.    
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Brightness
The brightness test is a measure of the reflectance of light by paper.  It is indicative of the apparent white-
ness of a paper sample.  The brightness of pulp can also be determined by preparing pulp pads or hand-
sheets according to standard methods.

Opacity
Opacity is a measure of the relative reflectance of light by paper on a pure black background compared 
with the reflectance when backed by several sheets of the sample paper (or a calibrated “white” backing).  
It is indicative of the usually undesirable tendency for printing on one side of the paper to show through 
to the other side.  Opacity always decreases with refining due to the fact that the bonded area between 
fibers is nearly transparent.  Any increase in the bonded area will increase the transparency and reduce 
the opacity.

Scattering Coefficient
Light scattering coefficient is an alternative form of presentation of the opacity test above, and it is often 
used as an indirect measure of the relative bonded area (RBA) in a paper sample.   

Ash Content
This test measures the non-combustible portion of a pulp or paper sample which is primarily made up of 
filler or coating materials.  Virgin pulps also have measurable ash content as a result of minerals absorbed 
into the wood of the source trees.  In this test, a sample of known weight is placed in an oven at a tempera-
ture of 525oC (or 900oC depending on the nature of the fillers present) and fully combusted.  The weight 
of the residual ash after combustion is reported as the ash content.
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7.  Theory of Refining 
 i) Qualitative Analysis

In this section, the details of stock preparation refining process will be examined more closely.  It will be 
shown that fiber and pulp properties can be manipulated by altering the refiner plate configuration and 
the operating conditions of a refiner in order to achieve an optimal combination of paper properties. 

Pulp refining is a process in which fiber flocs collect on refiner bar edges and are subsequently deformed by 
compressive and shear forces such that the cell wall of at least some of the fibers is permanently modified.

The nature of the cell wall modification is dependent on the magnitude of the compressive stresses  
(or strains) that occur during the deformation of the fiber flocs.  The extent of the cell wall modification 
depends on how frequently fiber flocs are collected and subsequently deformed for a given mass of fiber.  
In pulp refining, we are interested in both the magnitude and the frequency of these deformations.

Within each fiber floc, the average cell wall deformation of individual fibers is directly related to the defor-
mation of the floc itself:  e.g. if the floc is only slightly deformed, then the average fiber cell wall deforma-
tion will also be slight.  On the other hand, if the floc is greatly deformed, then the stresses and subsequent 
deformation of individual cell walls will be much greater.  If the deformation of the fiber floc is so extreme 
as to cut it into two, a portion of the fibers within the floc are also likely to be cut.

Recognizing that the deformation of the cell wall of an individual fiber during refining can only be accom-
plished by deforming the fiber floc in which it lies is a very important concept.  First, it makes it quite obvious 
that the nature of deformations is highly varied.  Even if it were possible to precisely control the degree 
of deformation of the floc, the randomly distributed fibers within the floc would be subjected to a wide 
range of deformations.  Therefore, it is only possible to speak of average degrees of deformation and 
average subsequent effects on fibers.  Second, it underscores the importance fiber flocs.  How many and 
how large are the flocs that support the refining load at any instant?  What effect does a change in the refiner 
filling design have on the size and number of fiber flocs?
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In the earlier section on paper structure, the two-fold objective of stock preparation refining was  
described as follows:

1. Increase the flexibility of the cell wall in order to promote increased contact area, and 

2. Fibrillate the external surface to further promote the formation of hydrogen bonds as well as increase 
the total surface area of fiber available for bonding.

The more refining that is done, the greater the increase in both fiber flexibility and surface fibrillation.  
Yet for a given amount of refining, there is no direct evidence linking the nature of the cell wall deforma-
tion with the resulting fiber characteristics.  This would require a mechanism for precisely deforming a 
large number of individual fibers and then applying some sort of quantitative inspection criteria on those 
fibers after deformation.  Nonetheless, there is some indirect evidence from measured pulp and paper 
properties which suggests that high magnitudes of cell wall deformation tend to cause surface fibrillation 
and internal swelling and, in the extreme, fiber cutting.  Lower magnitudes of cell wall deformation tend 
to promote surface fibrillation without much cell wall swelling, along with a greatly reduced likelihood of 
fiber cutting.  Recognizing the probabilistic nature of the refining process, it is quite certain that all of these 
effects take place to some degree under any given refining condition.    However, it is possible to control 
the emphasis of one effect relative to the others by controlling the intensity of refining. 

In the following section, the idea of refining intensity and its relationship to cell wall deformation will 
be discussed.  Quantitative methods for calculating intensity will be described, and the practical appli-
cation of these analytical methods to papermaking problems will be reviewed.  Before discussing the 
effects of refining intensity, it is worthwhile looking at the general behavior of paper properties as the 
amount of refining is increased.  Figures 7a-7c illustrate typical refining trends for mill refined softwood 
and hardwood kraft pulps.

Figure 7A
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Figure 7B

Figure 7B
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7.  Theory of Refining
 ii) Quantitative Analysis

Specific Edge Load Theory
At the microscopic level of fibers and fiber flocs, refining effects are dependent on the magnitude and fre-
quency of deformations.  In the macroscopic world of commercial papermaking, we cannot directly control 
these factors.  However, we can control them indirectly by making two broad assumptions.  

We can first assume that the greater the number of bar edges available in the refining zone, the greater will 
be the number of fibers able to absorb a given refining load because fiber flocs are collected on bar edges.  
The average number of crossing points where flocs can be caught between opposing edges of the rotor and 
stator plates can be calculated based on the inner and outer diameter of the plates, bar and groove widths, 
and the average radial angle of the rotor and stator bars.  While the term ‘bar edge length’ is generally used 
to describe this factor, it is mathematically proportional to the average number of crossing points.

Second, we can assume that the torque applied by a refiner motor is directly proportional to the normal 
force acting to push a refiner rotor against a stator.  This means that, with a fixed motor speed, the motor 
power is proportional to the normal force.

With these two assumptions, it is possible to conclude that the average magnitude of fiber deformation 
is directly related to the applied power divided by the product of rotating speed and edge length.  This is 
the basis of the Specific Edge Load Theory which was first introduced back in the 1960’s.  The calculated 
variable is referred to as ‘refining intensity’ or ‘specific edge load’ (SEL), and is typically expressed in units 
of watt-seconds per meter (Ws/m). 

In order to calculate the refining intensity, it is necessary to first determine the true load applied to the fibers.  
In a commercial refiner, there is significant power consumption resulting from hydraulic losses. The bars and 
grooves of the refiner filling accelerate and decelerate the fluid as it passes through the refiner, causing a heat-
ing of the fluid but no net refining effect on the fiber in the process.   This is called the ‘no-load power’ and 
it must be subtracted from the total motor load in order to accurately define the net power actually applied 
to the fibers.  A complete discussion of no-load power and how it is determined is included in appendix A.  

Given these relationships, the intensity (I) of refining may be calculated according to the following equation:

I = (Applied Motor Power – No-Load) / [RPM x Bar Edge Length x (min/60s)]

To define the refining process, it is not enough to know the magnitude or intensity of deformations.  It is 
also necessary to know the frequency or, more accurately, the average number of deformations per unit 
mass.  Computing the average number of deformations requires the assumptions that the deformation at 
any crossing point occurs over a finite time interval, and that the number of deformations per unit time is 
directly proportional to the rotating speed. Thus, the number of deformations per unit mass (N) is calculat-
ed according to the following equation:

N = (RPM x Bar Edge Length) / Tons per Day
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Since the amount of refining (P) is by definition equal to the product of the magnitude and the number of 
deformations, it can be calculated according to the following equation:

             P  = I x N
   = {(Net Power)/(RPM x Bar Edge Length)}*{(RPM x Bar Edge Length)/ t/d}
      = Net Power/ t/d = net hpd/t

The traditional application of refining theory usually refers to the specification of two parameters: Specific 
Energy (equal to P above) and Intensity (equal to I above).   There is seldom any specific reference to N.  
However, a useful insight is gained by knowing that applied power determines the magnitude of deforma-
tions while throughput determines the number of deformations. 

C-Factor Analysis  
In recent years, the introduction and application of the C-Factor analysis by R.J. Kerekes et al. has lent sub-
stantial credibility to the notion of I and N.  The C-Factor analysis takes the refining theory a step further 
by incorporating values for average fiber length and fiber coarseness in order to calculate I and N on a ‘per 
fiber’ basis.

C-Factor analysis also takes into account certain factors relating to bar and groove geometry which provide 
for a more accurate description of refining intensity.

It is appropriate to use both Specific Edge Load and C-Factor methods when analyzing a refiner filling appli-
cation.  It is important to recognize that SEL does not take into account fiber characteristics but does provide 
a benchmark value for which there exists a great deal of historical information.

The actual equation for the C-Factor calculation is too complex to include here.  In fact, it is somewhat te-
dious to perform the calculation in the absence of a computer program.  Virtually all C-Factor analyses are 
performed using a spreadsheet program that requires input information regarding refiner size, speed, no-
load power and motor load.  It also requires input on refiner filling configuration (including bar and groove 
widths, depths and radial angles), as well as input regarding pulp consistency, throughput, fiber length and 
coarseness.  The output of the spreadsheet program includes a value called the C-Factor which of itself is 
not physically meaningful, and the two values I and N on a per fiber basis.
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8. Refiner Plate Selection:
 i) The Correct Amount of Refining (Specific Energy Input)

The net specific energy consumption of a refiner or refining system determines the amount of refining that 
is applied to a pulp.  As indicated in the preceding section, it is calculated by dividing the net applied power 
by the throughput according to the following equation:
     

Net Specific Energy =  (Total Applied Power – No Load)/ t/d

Common North American units are horsepower per short ton per day, or hpd/t.  The common metric units 
are kWh/metric ton.

The throughput in t/d or t/h is based on moisture free fiber (also referred to as oven dry or bone dry basis), 
and can be calculated if both the flow rate (in gallons per minute or liters per minute) and the consistency 
are known:

         short t/d = Flow (gpm) x 6 x % Consistency
         metric t/h = Flow (lpm) x 0.06 x %Consistency 

Example calculations:

 a)  With a flow rate of 500 gpm and a consistency of 4.5%, the throughput is:  
  t/d  = 500 x 6.0 x 0.045 = 135 st/d

 b)  With a flow rate of 1200 lpm and a consistency of 5.3%:
  t/h  = 1200 x 0.06 x 0.053 = 3.8 mt/h

 c)  If the motor load is 575 hp and the no-load power is 115 hp, then the net applied power is:  
  575 – 115 = 460 hp   

  and the specific energy input is:
  460 hp / 135 t/d  = 3.4 hpd/t 

To convert from hp to kW, multiply hp by a factor of 0.746.  The equivalent specific energy calculation for 
the flow rate of 1200 lpm would then be:

 (575 hp x 0.746) – (115 hp x 0.746) = 342 net kW

 342 kW / (1200 * 0.06 * 0.053) = 90 kWh/t

According to these equations, if the applied motor load is increased or if the throughput is decreased, then 
the net specific energy will increase.
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The specific energy required for a given installation is usually determined based on historical experience at 
a given mill.  Even for the same or similar grades, and the same fiber source and pulping process, two paper 
mills may apply significantly different specific energy levels in the stock preparation refining system.  Table 
4 shows some typical energy ranges for different paper and paperboard grades.

An estimate of the specific energy requirement can be made for a given type of pulp if the unrefined pulp 
freeness and the target freeness level are known.  By subtracting the target freeness from the unrefined 
freeness, the total amount of freeness change is calculated.  Values in Table 5 can then be used to predict 
approximately how much energy should be required to achieve the desired freeness drop.

Note that this represents a rough guideline only.  It is often the case that specific energy requirements are 
best determined based on paper quality checks during mill processing.  It is therefore advisable that the 
available power for refining be around 25% greater than the expected nominal level.

TABLE 4

Grade Net hpd/t 

Fine Paper HWD Kraft
SWD Kraft

Tickler

2-5
3-7

1-1.5

Linerboard Base
Top

5-7
10-12

News SWD Kraft
TMP/GWD

2-5
1-5

GWD Printing 
Paper

SWD Kraft
TMP/GWD

3-7
3-6

TABLE 5

Furnish Freeness Drop / Net hpd/t

Bleached SWD 
Kraft

20-40 ml

Bleached HWD 
Kraft

60-100 ml

GWD 3-7 ml

OCC 40-70 ml

Mixed Office 
Waste

50-70 ml

News 20-35 ml
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8. Refiner Plate Selection:
 ii) The Correct Intensity of Refining (Specific Edge Load)

Determining “the best” refining intensity for a particular refining application can be considerably more 
difficult than specifying the required specific energy input.  Even with a substantial background of mill op-
erating data, designing a refining system to operate at optimal intensity involves several economic trade-
offs.  Hence, it requires a clear understanding of the economic impact of paper quality improvements. 

If a pulp is only lightly refined, the refining intensity is usually not so important because there is not 
enough fiber modification taking place to make the difference discernable.  An exception to this is the 
refining of unbleached kraft for sack paper applications for which the initial increase in tear with refining 
can only be assured if the intensity is sufficiently low (i.e. 1.5-2.0 Ws/m).

The benefits of low intensity refining for hardwood pulps and for mechanical pulp post-refining are quite 
widely acknowledged by papermakers.  In the past, the lower limit of intensity had been established at 0.6-0.8 
Ws/m due to the limitations of plate manufacturing technology.  However, recent developments in this area 
have enabled intensities of 0.1-0.5 Ws/m to be achieved while maintaining efficiency and hydraulic capacity.

Low refining intensity has long been considered unnecessary for softwood pulps and deemed too costly 
in terms of potential increases in specific energy requirements.  This view is changing as many mills are 
seeking gains in tear strength and toughness that lower refining intensity can provide.  Many mill refiners 
currently operate in the range of 2.0 – 4.0 Ws/m.  Any easily achieved reduction in intensity will almost 
always be beneficial to quality.   

For hardwood pulps, low refining intensity results in greater bulk and opacity at a given level of most 
strength properties.  There is no substantial evidence to demonstrate that refining intensity can be too 
low in the case of hardwood pulps.  Many mill refiners operate in the range of 0.6-1.0 Ws/m, and nearly all 
applications could benefit from any reduction achieved by changing plate patterns.  Another key benefit of 
low intensity refining for hardwood is the reduction in energy required to achieve a given pulp quality or 
drainage level.  Figure 8 shows a compilation of pilot plant and mill data illustrating the impact of intensity 
on freeness drop for various bleached hardwood pulps.
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The data points clearly show a trend of increased freeness drop per net hpd/t applied as the refining in-
tensity is reduced from 2.0 to 0.2 Ws/m.  In other words, less energy is needed to achieve a given freeness.  
This can be taken as an operating cost reduction, or as an increase in power available for quality enhance-
ment or to accommodate a higher throughput.

For mechanical pulp post-refining, low refining intensity will yield higher freeness, increased fiber length 
and improved tear strength at a given debris level and energy input.  At an equivalent freeness (with high-
er specific energy input), reduced debris levels can be obtained.  
Table 6 lists recommended ranges of refining intensity for various types of fiber.  For most applications, 
refining intensity should be as low as is practically achievable in order to maximize pulp quality potential.

In certain softwood refining applications, reducing the total power consumption or increasing the power 
available for refining can be more beneficial than achieving the lowest possible intensity level.  In these in-
stances, it is often possible to reduce the active diameter of the refiner by using reduced periphery plates.  
The reduced active diameter will have a lower no load power demand.  

The relationship between plate diameter and no load is as follows:

No load power = k * diameter4.3 * rpm3

Figure 8: Refining intensity vs freeness drop

TABLE 6

Fiber Type Refining Intensity (Ws/m)

SWD Kraft 1.0-2.5

HWD Kraft 0.1-0.5

Recycle 0.2-0.8

TMP/GWD 0.2-0.5
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Table 7 demonstrates the potential energy savings that would result from a reduction in the active diame-
ter of refiner plates operating at typical speeds.

TABLE 7
Active Plate 

Diameter (in)
Reduced Active 

Plate Diameter (in)
Estimated Power 

Savings (Hp)
Annualized Savings at 

$0.05/kWh
46 43 83 $27,120 

46 40 150 $49,000 

42 39 90 $29,400 

38 35 65 $21,240 

34 31 45 $14,700 

30 27 45 $14,700 

26 24 33 $10,800 

Depending on the specific circumstances, a mill may choose to take the economic benefit of the no load 
power savings, or they may use the additional available energy to achieve quality benefits.

Whether full diameter or reduced periphery plates are used, it is nearly always beneficial to use the 
narrowest practical bar width and groove width in any refiner.  The practical limits of bar and groove 
width depend on the specifics of the application.  

The following guidelines apply:

Bar Width

In the absence of potential metal contamination and no-load power concerns, the width of bars would be 
only as great as required to rigidly hold the flocs of pulp that are being deformed.  In real situations, the 
bar width is dictated mostly by the metal contamination potential of the application.  Metal contamination 
introduces bending loads on the bars that far exceed the normal refining load.  As a result, the minimum 
practical bar width is usually in excess of 0.050”.   Experience has shown that in a refiner where baling wire 
contamination is likely, the minimum bar width should be in the order of 0.075”.   

Groove Width 

The minimum practical groove width is usually determined by the tendency for plugging of the groove, 
either by fiber or by a common contaminant.  For post-refining of groundwood in a contaminant free 
system, a groove width of  0.050” would be possible.  For hardwood pulps the groove width should be at 
least 0.075”.  For softwood pulps the groove width should be at least 0.090” or 0.125”, depending on the 
average fiber length of the species being refined.  Another factor to consider is that no-load power var-
ies directly with the hydraulic section or open area of the cross section of the pattern.  A plate with 1/8” 
grooves and 1/4” bars will have a higher no-load power than a plate with 1/4” grooves and 1/8” bars.

Minimum bar and groove widths create the lower limit of refining intensity for any given refiner size oper-
ating at a fixed speed.  If there is a strong quality incentive to reduce intensity further, it can only be done 
be adding additional equipment.
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9. Flow Considerations in a Stock Preparation Refiner 
All stock preparation refiners are hydraulic machines with high speed rotating elements.  That means that 
they operate in an incompressible medium (no appreciable air or other vapor present) and are subject to 
the considerable influence of fluid friction and centrifugal forces.  They act much like centrifugal pumps, 
albeit with very leaky wear plates.

As discussed previously, the capacity of a refiner may be limited by the available net power which will limit 
the amount of refining that can be done.  It is very important to recognize that the capacity of a refiner 
is also limited by its ability to pass a volumetric flow.  The flow capacity of a refiner is determined by its 
disk diameter, its operating speed, and the hydraulic section and pumping angle of the installed refiner 
plates.  Table 8 contains the recommended flow ranges for different sizes of double disk refiners.  In most 
instances, the high end of these ranges is very optimistic and will result in poor refining with very short 
useful plate life.  High flows are primarily encountered with tickler refiners where the entire flow of the 
paper machine stock must pass through the refiner.
 
A complete discussion of the various flow configurations for stock prep refiners and the flow rate/pressure 
relationships is included in Appendix B. 

TABLE 8
DOUBLE DISK REFINER CAPACITY CHART

Recommended Flow Ranges for Various Size Refiners

Plate Diameter 
(in)

Max Power 
(Hp)

Rotor 
RPM

Nominal
No Load

(Hp)

Flow Rates 
(GPM)

LOW MED HIGH

20 300 720 75 150 250 400

24 450 720 85 250 350 600

26 500 720 120 300 450 800

30 600 600 125 375 600 1100

34 800
1000

514
600

135
215

475
550

750
875

1400
1650

38 1250 514 215 650 1075 2025

42 1500
1750

450
514

220
330

775
900

1250
1450

2400
2800

46 2000 450 325 1025 1675 3275

52 3000
3000

400
450

385
550

1300
1475

2150
2425

4300
4850

54 3000 400 450 1475 2425 4850



10.  Conclusion
 
This training manual was designed to provide the reader with a general overview of the stock prep refining 
process.  There are many steps in the complex process of converting wood into paper but many consider 
refining to be the heart of papermaking.  Refining plays an important role in modifying the characteristics 
of fibers so that they may form a sheet of paper or paperboard with a specific set of desirable properties 
such as stiffness, fiber bonding and surface smoothness, to mention just a few.  Proper selection of refiner 
plates and operation of the refiners is key to optimizing the quality of the paper being produced using 
available raw materials.  Check out our other resources at www.aikawagroup.com to learn more about 
refining science and help address your stock prep challenges.   
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Appendix A 

No-Load Power 
In a Stock Preparation Refiner
In all pump-through refiner applications, a certain amount of applied power is consumed by the hydraulic 
pumping effect and the energy loss associated with viscous shearing of the fluid.  This is called the “no-
load” or circulating power.   This energy produces no measurable change in the properties of the pulp 
being refined, except in the case of very sensitive pulps and/or very low relative throughput rates.  

No-load power is mostly dependent on the diameter and rotational speed of the rotor, but it can also be 
significantly affected by the bar and groove configuration of the refiner plates.  Factors such as flow rate, 
stock consistency and plate gap have a relatively minor influence.  Contrary to frequent supplier claims, 
no-load is not dependent on the weight or mass of the rotating elements.  The inertial mass of the rotating 
elements affects only the acceleration time for the motor-refiner system at motor start, and the resulting 
torsional loads on the rotating system. 

Since all changes in pulp properties are determined by the “effective” power applied (i.e. total motor pow-
er minus no-load power), it is important to know what is the actual no-load power for any given refiner, 
installed plate pattern, and relative plate wear.

No-load can be determined by careful measurement or it may be calculated in accordance with theoretical 
formulas.   A precise measurement of no-load power requires that the rotor be firmly held so as to prevent 
contact with the stators on either side.  Because of the radial variability in the static pressure profile acting 
on each side of the rotor, it is often the case that instability exists which causes the rotor to lean against 
one or the other of the stators.  If only water is present, it will result in noisy contact and a slight increase 
in the measured load.  The absence of a fiber mat will also result in a slight scarring of the bar surfaces of 
the refiner plates.  If fiber is present, this instability can result in a significant increase in measured load 
and is usually the cause of incorrect no-load measurements.  It is important to recognize that, for any given 
refiner with a given plate pattern, the no-load power will vary considerably from a maximum value when 
the plates are new to some much lower value (as much as 60-80% lower) when the plates are fully worn.

Since it is somewhat difficult to obtain an accurate measurement of refiner no load, it is often easier to rely 
on the calculated value.  With an extensive collection of historical data, refiner and refiner filling manufac-
turers have developed quite reliable predictive models for this purpose.  

Most formulas used for calculating no-load power are based loosely on the affinity laws used in pump 
design.  Indeed, a refiner does behave much like a pump, albeit a very inefficient one.  Every plate pattern 
will exhibit a characteristic curve that describes how the total head (pressure rise) varies with capacity 
(flow rate).  The pressure rise will be at a maximum at zero flow, and will decrease as flow is increased, and 
actually become a pressure drop at a sufficiently high flow rate.  



33

As with a pump impeller, pumping power (or no-load) in a refiner is proportional to the third power of ro-
tational speed.  However, unlike a homologous series in pump impellers, the no-load power for the refiner 
is proportional to the active plate diameter raised to the power of 4.3.  

In addition to the effect of diameter and speed, the groove depth and hydraulic section ratio have a dra-
matic effect on no-load for a particular refiner plate configuration and wear condition.  The hydraulic 
section ratio is the ratio of groove width to the sum of bar and groove width, accounting for any effect 
of tapered groove walls.  Based on these relationships, a formula for the calculation of no-load power is:

   NL = 102 x (RPM/100)3 x (Da/100)4.3 x (2 x Gw /( Bw + Gw)) x (Gd /4)

      where,  NL = no-load (measured in horsepower)
     RPM = rotational speed of the motor (revolutions/minute)
   Da = diameter of the active surface of the refiner plate (inches)
   Gw = groove width (sixteenths of an inch)
   Bw = bar width (sixteenths of an inch)
   Gd = groove depth (sixteenths of an inch) 

An example of this calculation can be found in Appendix C.

Note that most published no-load data for refiners is based on brand new cast refiner plate fillings with a typi-
cal bar and groove width of 2.0 sixteenths and an available groove depth of about 4.0 sixteenths (0.25 inches).    



34

Appendix B 

Flow Considerations
In a Stock Preparation Refiner
All disc refiners used in stock preparation applications consist of one or more pairs of discs, one rotating 
and one stationary, both with working surfaces made up of bars and grooves.  These discs are contained 
within a pressurized vessel.  The process stream consists of aqueous slurry of wood pulp fibers which is 
usually delivered to the refiner by a centrifugal pump.  The flow rate through the refiner is usually estab-
lished by setting a valve located in the piping on the discharge side of the refiner.  The suspended solids 
concentration, or stock consistency, is typically in the range of 2-6% oven dry solids by weight.  For the 
purpose of analyzing fluid flow behavior, the process stream can be considered to be an incompressible 
fluid with flow properties similar to water.  Pumping characteristics up to about 6% consistency will be 
essentially the same as for water.  Friction loss in pipe flow will be slightly different depending on several 
factors, including consistency and type of pulp being processed.

While stock preparation refiners may in principle have many disc pairs, the vast majority are of the double 
disc (DD) type.  A schematic cross section of a double disc refiner is shown in Figure 9.   The rotating disc 
is free to float and is ‘sandwiched’ between the two non-rotating discs.  Also shown in Figure 9 is the disc 
position numbering system that will be used throughout this discussion.  Position #1 refers to the station-
ary disc that is closest to the drive motor.  

Double disc refiners can be operated in any one of three modes:  duo-flo, twin-flo, and mono-flo mode.

Figure 9
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DUO-FLO or TWIN-FLO OPERATION

Most double disc stock preparation refiners operate in the duo-flo or twin-flo modes.  Although arguments 
have been made regarding the ability to control the flow split using one alternative or the other, there is 
little reliable evidence to support either claim.  In most circumstances, it is the pumping capacity of the re-
finer plates that largely determines the flow split and, more importantly, the force balance that acts on the 
floating rotor.  In order for the refining effect to be the same for the flow streams on each side of the rotor, 
it is necessary for both the intensity of refining and the amount of refining to be the same.  Meeting both 
these requirements simultaneously requires that the closing force acting on the two disc pairs is the same 
and that the flow rate passing between each disc pair is the same.  In order for the closing force to be the 
same, it is essential that the rotor be free to slide.  Resistance to sliding can occur in (a) the sliding coupling, 
(b) the sliding bearing support, or (c) the rotating shaft seal which is usually a packing box.  All three areas 
represent critical maintenance items for a double disc refiner.  In addition to these three prerequisites, equal 
closing force also requires that the pressure acting against each face of the rotor be the same.  Since the 
pressure acting against opposing rotor and stator plates is dependant on flow rates and the related pressure 
rise between the inside diameter (ID) and the outside diameter (OD), it is important to have an understand-
ing of the fundamental hydraulic principles involved.  Proper selection of the plate pattern, process flow 
arrangement and control strategy depend on a clear understanding of the hydraulic forces that are at work.

For the purpose of this discussion, we will first consider the case of a single disc pair with flow passing 
between the plates from inside to outside, and with perfectly radial bars and grooves.  The rotor plate 
acts like a pump impeller.  Pressure rise in an impeller of given diameter is determined firstly by impeller 
speed, and then by flow rate.  At peripheral speeds that are typical for pump-through disc refiners, pres-
sure rise at zero flow rate would be about 6-7 bar if the stator had no grooves but was instead a smooth 
plate against which the rotor bars were to run.  With such a smooth stator arrangement, we could gener-
ate a characteristic curve for this pump that would look something like the curve labeled “smooth stator” 
in Figure 10.  With a real disc pair, the stator in fact has grooves of about the same hydraulic cross section 
as the rotor plate.  These stator grooves allow fluid to leak back toward the ID.  The result is that the ob-
served pressure rise is much lower for the real disc pair, usually 1-2 bar at zero flow. Thus, in the real case, 
the curve looks more like that labeled “normal stator” in Figure 10.  In this example, the flow rates shown 
are typical of a single disk pair with a 34” DD refiner.  This is the characteristic curve for this particular hypo-
thetical plate pattern.  Every plate pattern operating at a particular speed has a unique characteristic curve.   
Most double disc refiners operate at peripheral speed of around 90 ft/sec.  As the size increases, the rota-
tional speed is reduced in order to maintain the same peripheral speed, and so the maximum pressure rise 
is generally found to be in the range of 1-2 bar at zero flow.  For refiners operating at low speed, the max-
imum rise will be somewhat lower; and for refiners operating at relatively high speed, the maximum rise 
will be somewhat higher.  Flow capacity at a given pressure rise varies more or less according to the square 
of the diameter.  Thus, nominal flow capacity for a 42” refiner will be about 4.5 times that of a 20” refiner.  

The bars and grooves of a refiner plate are typically angled with respect to a radial line such that they en-
courage an outward flow of the pulp (“pumping” orientation).  They can also operate in such a way that they 
inhibit outward flow (“hold back” orientation).   The effect of reversing bar angle orientation is the same as 
simply reversing the direction of rotation of the rotor.  It is very important to realize that the primary pump-
ing influence in a disc refiner (or in a pump for that matter) results from the centrifugal force created by 
rotation of the fluid.  Changes in the bar angle simply affect the efficiency of the pumping effect and cannot 
overcome the centrifugal force.  No amount of hold back angle can produce a pressure drop at zero flow rate.
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In the case of refiner plates, there is one more aspect that complicates the characteristic curve:  plate 
wear.  The characteristic curve for a pump impeller is very dependent on the height of the vanes of the im-
peller.  As the typical pump impeller wears, this height changes only modestly if at all.  In the case of refiner 
plates, the height of the bars can change dramatically over time.  If the vane height of a pump impeller 
were reduced by half, the capacity at a given pressure rise would be reduced by half.  The same is true of 
the pumping capacity of the rotor plate of a disc refiner.  For the disk refiner, there is the further compli-
cation that both the stator and the rotor plates can wear.  Remembering that stator grooves represent the 
path for high-pressure fluid to leak back toward the center of the refiner, the loss of capacity of the rotor 
as the stator plates wear is at least partly offset by the reduction in the “leak-back” rate of the stator.    

In a double disc refiner operating in duo-flo mode, it should now be apparent that the two disc pairs behave 
like two parallel pumps with a common suction and a common outlet header.   Since the inlet and outlet 
pressures are identical, the flow will be essentially the same on both sides as long as the bar and groove 
depth is the same.  And, although it is possible even with duo-flo mode to have some imbalance of forces act-
ing on the rotor, usually the imbalance is small and the wear occurs more or less evenly between the two disc 
pairs.  In any case, it is relatively easy to establish the characteristic pump curve for the duo-flo refiner with 
any given set of plates installed.  By varying the flow through the refiner in increments and by recording the 
inlet and outlet pressure at each flow rate, the necessary data is generated to plot the characteristic curve.

It was mentioned above that the hydraulic forces acting on each side of the rotor are approximately the 
same in a duo-flo refiner.  While this is generally true, it is nevertheless possible to have an imbalance 
that can measurably affect the quality of the refining result.  Such an imbalance usually results from small 
differences in the pumping capacity of the #1 and #2 plate pair compared with the #3and #4 plate pair.   
In the case of new plates, this is usually due to manufacturing irregularities in the refiner plates themselves.   
In the case of plates that have been in operation for some time, it is usually due to a difference in wear that 
has occurred between the two plate pairs.   In a refiner with mirror image plates in the #1 & #4 position and 
in the #2 & #3 position (as is usually the case), differences in wear are almost always a result of mechanical 
resistance to sliding and not due to hydraulic imbalance.   Hydraulic imbalance tends to be self-correcting 
because the deeper groove side of the rotor will have a higher flow rate.  As will be seen later, higher flow 
rate means a flatter pressure profile which results in a reduced normal force acting on the rotor. 

Figure 10: 34” DD Characteristic Curve
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Measurements have been made to determine the relationship between the closing force acting on a single 
disc pair and the resulting refining load in a 34” refiner.  These results suggest that a difference of 0.1 bar 
in average pressure acting against the two opposite rotor surfaces could result in a difference of 40 kW in 
net power consumed between the two disc pairs.  With a combined net applied load of 200 kW for the 
two disc pairs, 80 kW may be applied to the #1 and #2 plates while 120 kW may be applied to the #3 and 
#4 plates.  In the best circumstance, the difference in flow that has produced the 0.1 bar average pressure 
difference is in exactly the same proportion as the difference in resulting refining load.  In that case, the 
specific energy applied in both disc pairs would be the same.  However, the refining intensity would be 
50% higher for the #3 and #4 plate pair.  In fact, it may take only a slight difference in flow to produce an 
imbalance in load that could significantly impact both the amount and the intensity of refining.

Again, in most cases of duo-flo operation, hydraulic imbalance of the rotor is not a problem.  As long as 
the flow through the refiner results in a pressure rise of no more than about 1.5 bar, then differences will 
be quite small and the impact on the refining effect will be negligible.  At very low flow rates, particularly 
in combination with high rotational speeds and high capacity refiner plates (e.g. with relatively wide and 
deep grooves), the pressure rise may be significantly higher.  In order to ensure proper rotor balance in 
these instances, it is usually recommended to operate with a recycle flow.  This will allow the flow through 
the refiner to be kept high, even if the net forward flow to the paper machine is low.   Even with a pressure 
rise of 2.0 bar, satisfactory operation can be achieved if the refiner is normally operated at 80% or more 
of full power.

MONO-FLO OPERATION 

In the case of mono-flo operation, the hydraulic situation in the refiner is much more complicated.  It is 
primarily for this reason that few refiners are operated in this mode.  While there is little information avail-
able comparing the quality benefits of mono-flo and duo-flo operation, there are several paper mills that 
believe the benefits of mono-flo are worth the added complexity of plate selection and operation.  

In a mono-flo refiner, stock flow follows a series arrangement by entering the refiner through the first disc 
pair and exiting through the second pair.  The first disc pair (#1 & #2) acts like a centrifugal pump, just as in 
the case of duo-flo. That first pair operates according to a characteristic curve at one-half the flow of the 
equivalent duo-flo refiner.  The second disc pair (#3 & #4 position) is hydraulically more complicated.  The 
centrifugal forces that create a normal pumping effect are partly offset by reverse angled bars.  Still, it re-
quires a considerable pressure to force the stock flow from the OD to the ID of the #3 & #4 pair.  As a result, 
the pressure rise developed in passing through the #1 & #2 pair is used to drive the flow back through the 
#3 & #4 pair, and very little or no pressure rise occurs across the refiner.   For example, the pressure might 
rise from an inlet of 2.5 bars, to a casing pressure of about 4 bars, and then back to an outlet pressure of 
2.3 bars.   Experience has shown that in order to get uniform plate wear, it is necessary to have a pressure 
drop of about 0.2 – 0.3 bars across the refiner.  Often this requires a relatively high flow rate through the 
refiner, and subsequent recirculation in order to achieve the proper net flow.
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Because of the lack of symmetry in the hydraulics of the mono-flo refiner, it can often be very difficult to 
predict in advance what pattern will produce proper rotor balance for a given flow rate.  And since precise 
balance will only occur at a specific flow rate for that fixed plate pattern, it is usually necessary to operate 
with a recycle flow to ensure balance over a wide range of net flow requirements.

One of the arguments favoring mono-flo operation is the fact that the flow is assured to be identical be-
tween the two disc pairs.  Therefore, it remains only to be certain that the pressure distribution across the 
face of the #2 plate results in the same normal force as results from the pressure distribution across the 
#3 plate to ensure uniform refining. 

In order to understand the potential for rotor imbalance in a mono-flo refiner, it is necessary to look more 
carefully at the flow and pressure conditions within the refiner plates.  Figure 11 illustrates the pressure 
distribution acting across the face of the #2 plate in a mono-flo refiner.  Two examples are shown, one for 
“ hi flow” and one for “ lo flow”.

The static pressure drops as flow enters the refiner at the ID due to a suction effect.  The higher the flow, 
the higher the suction effect as we know from the NPSH requirements for centrifugal pumps.  As the fluid 
is further accelerated outward toward the OD, the static pressure rises and reaches a maximum at the OD. 

As we know from the analysis of a duo-flo refiner, increasing the bar height and the relative groove width 
on the rotor plate increases the flow capacity.  For a given rotor plate configuration, an increase in bar 
height and/or relative groove width on the stator reduces the capacity by increasing “leak back”.   There-
fore, the casing pressure in a mono-flo refiner can be reduced by increasing the flow rate, by reducing the 
bar height on the #2 rotor plate, or by increasing the bar height on the #1 stator plate.  Reducing the bar 
angle on the plate pattern can also reduce casing pressure somewhat.   All of these factors will have the 
same general effect on the pressure distribution of Figure 11 as if the flow rate were increased.

Figure 11: Pressure Distribution
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In a mono-flo refiner, it is necessary to maintain sufficient pressure in the casing to overcome the outward 
pumping effect of the #3 rotor.  This pumping effect can be similarly reduced by reducing the rotor bar 
height, increasing the stator bar height, or increasing the amount of negative pumping angle.

In general, changing bar angles is not an ideal way to control the hydraulics of a disc refiner regardless of 
the mode of flow.  From the point of view of refined pulp quality, the optimum intersecting angle is fixed at 
around 45o.  It is difficult to materially alter the hydraulic characteristics of a mono-flo refiner by changing 
bar angle without having an adverse affect on pulp quality.  The most effective method of control is with 
recycle flow which permits the use of a variety of plate patterns and accommodates a wide variation in 
net process flow rate.  The next best method to control the hydraulics is to control the bar height and the 
ratio of groove-width to bar-width of the #2 and #3 plates.  In this way, hydraulic balance of the rotor can 
be achieved while maintaining the flow capacity of the refiner. 

Under the proper hydraulic conditions in a mono-flo refiner, the pressure distribution acting on the #2 and 
#3 plate faces will be as shown in Figure 12.  With the shallower distribution on the #3 plate and a modest 
pressure drop, the net force resulting from the mathematical integration of the two profiles will precisely 
cancel, resulting in a perfectly balanced rotor.

While proper balance of a mono-flo refiner can be difficult in the absence of a recycle flow loop, it is pos-
sible to achieve acceptable operation by stepwise change in the bar-groove geometry of the refiner plates.

Figure 12: Pressure Distribution
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Appendix C 

Case Study and 
Sample Calculations
A fine paper mill is refining bleached hardwood kraft under the following operating conditions:

- One 34” DD refiner with a 1000 hp/600 rpm motor
- 700 hp applied motor load
- 900 gpm flow with no recirculation
- 4% consistency
- 500 ml freeness target
- 34” cast plates with a 2.0,2.0,4.0 pattern
- 30 km/rev bar edge length

Use this information to calculate the no load power, net hpd/t, refining intensity and freeness change 
per hpd/t applied.

STEP 1 - Calculate no load power 
NL = (102*(RPM/100)3*(Diam/100)4.3)*(2*Groove Width/(Bar+Groove Width))*(Groove Depth/4)

   Motor speed  600 rpm
   Plate diameter  34 inches
   Bar width  2.0 1/16 in
   Groove width  2.0 1/16 in
   Groove depth  4.0 1/16 in 
   No Load =   213 hp   

STEP 2 – Calculate applied power
Net Power = Applied Motor Load – No Load Power

    Applied power  700 hp
    No load power  213 hp

    Net Power =  487 hp

STEP 3 – Convert from hp to kW
    Net kW = 0.7457 * net hp =   363  kW
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STEP 4 – Calculate throughput
Short Tons/Day = Gallons per Minute * % Consistency * 6

    Flow   900  gpm
    Consistency   0.04

    Throughput =   216  t/d

STEP 5 – Calculate net specific energy
Specific Energy = Net Power / Tons per Day

    Net power  487 hp
    Tons per day  216 t/d

    Specific Energy = 2.3 net hpd/t

STEP 6 – Calculate Specific Edge Load (refining intensity)
Specific Edge Load (SEL) = Net kW /(Bar Edge Length*Motor Speed* 1 min / 60 s) 

    Net kW   363 kW
    Bar edge length  30 km/rev
    Speed    600 rpm

    Specific Edge Load = 1.2  Ws/m

STEP 7 – Calculate the freeness drop achieved per hpd/t applied
Δ CSF/ hpd/t = (Inlet CSF – Outlet CSF) / net Specific Energy

    Inlet CSF  625 ml
    Outlet CSF  500 ml
    Specific energy  2.3 hpd/t

	 	 	 	 Δ CSF/ hpd/t =  55 ml / hpd/t  
        (60-100 ml is typical for HWD kraft) 



STEP 8 – Assess potential benefits of reduced periphery Finebar® plates 
with equal groove volume and twice the edge length.

    Reduced plate diameter  31 in
    Bar width   1.0 1/16 in
    Groove width   1.5  1/16 in
    Groove depth   3.5 1/16 in
    Bar edge length   59  km/rev
    Motor speed   600  rpm

    New No Load =  150 hp - a savings of 63 hp based on plates as new

    New SEL = 0.6 Ws/m - in recommended SEL range for HWD of 0.3-0.8 Ws/m

Annualized energy cost savings @$0.045/kWh 

    = (63 hp*0.7457 kW/hp)*($0.045/kWh)*(24 h/day)*(365 days/yr)
    = $ 18,400

Note that additional energy savings would likely be realized from the improved efficiency achieved when 
refining hardwood kraft at low intensity.

*********
END


